Assignment 11

Coverage: 16.7

Exercises: 16.7 no. $3,6,4,8,13,16,18$.
No homework.

Supplementary Problems

1. Let S be the triangle with vertices at $(1,0,0),(0,2,0),(0,0,7)$ with normal pointing upward. Find the circulation of the vector field $\mathbf{F}=x \mathbf{i}+3 z \mathbf{j}$ around the boundary of S with the orientation determined by the chosen normal of S.
2. Show that for a closed oriented surface S, that is, a surface without boundary,

$$
\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d \sigma=0
$$

Hint: See how to apply Stokes' theorem.
3. (Optional) Let S be the surface given by $(x, y) \mapsto(x, y, f(x, y)),(x, y) \in D$. That is, it is the graph of f over the region D. Show that in this case Stokes' theorem

$$
\iint_{S} \nabla \times \mathbf{F} d \sigma=\oint_{C} \mathbf{F} \cdot d \mathbf{r}
$$

(\mathbf{F} is a smooth vector field on S) can be deduced from Green's theorem for some vector field on D. Hint: Let the boundary of D be $\mathbf{r}(t)=(x(t), y(t))$. Then the boundary of S is $\mathbf{c}(t)=(x(t), y(t), f(x(t), y(t)))$. Convert the integration in S and C to the integration on D and the boundary of D respectively.

